11月9日,在2022年世界互联网大会乌镇峰会期间,2022年“世界互联网领先科技成果”发布。大规模知识图表示学习的体系化基础算法及开源工具入选。

人工智能要谋求新突破,离不开大规模知识计算,知识图表示是其中的一个关键。2010年以来大数据驱动的深度学习范式表现出了巨大威力,但依然存在缺乏推理能力和局限性。

清华大学针对大规模知识图表示学习中内部关系类型复杂、内部推理路径繁复、外部富信息利用匮缺这三个全局性技术难题,建立了基于深度学习框架的体系化基础算法。技术创新包括:基于关系类型专属语义空间投影的TransR算法、复杂关系路径推理的PTransE算法、融合实体文本属性信息的TADW算法、融合实体定义文本描述信息的DKRL算法、融合实体类型层次信息的TKRL算法、融合关系文本描述信息的ATT算法以及互注意力机制驱动的语言模型与知识图耦合JointE算法等。这些技术创新,显著提升了大规模知识图表示的性能。

目前,相关8篇代表性论文Google Scholar引用共6185次(最高单篇引用达2611次)。基于该算法体系,清华大学在最具影响的国际开源平台GitHub上发布了3个开源工具包,形成了一套知识图表示学习开源系统,共获逾1万个星标及逾3千次分支创建,成为国际上知识图表示学习的体系化主流工具之一。同时也部署在新一代人工智能开源开放平台OpenI上,支持开源应用生态建设。

项目团队还将该开源工具包应用于世界上两个最著名的大规模通用知识图谱Freebase和Wikidata,以及中文知识图谱上,构建了多个千万级实体与亿级关系三元组规模的知识图表示模型。据介绍,这是国际上最大的开源知识图表示模型之一。



中国企业电子商务网版权及免责声明:
1. 凡本网注明“来源: 中国企业电子商务网” 的所有作品,版权均属于中国企业电子商务网。如转载,须注明“来源:中国企业电子商务网”。违反上述声明者,本网将追究其相关法律责任。
2. 凡本网注明 “来源:XXX(非中国企业电子商务网)” 的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
3. 任何单位或个人认为中国企业电子商务网的内容可能涉嫌侵犯其合法权益,应及时向中国企业电子商务网书面反馈,并提供相关证明材料和理由,本网站在收到上述文件并审核后,会采取相应措施。
4. 中国企业电子商务网对于任何包含、经由链接、下载或其它途径所获得的有关本网站的任何内容、信息或广告,不声明或保证其正确性或可靠性。用户自行承担使用本网站的风险。
6. 如因版权和其它问题需要同本网联系的,请依照下方联系方式进行沟通,我们将第一时间进行处理。
联系邮箱: webmaster@ccecw.com